Genetic and biochemical analysis of high iron toxicity in yeast: iron toxicity is due to the accumulation of cytosolic iron and occurs under both aerobic and anaerobic conditions.

نویسندگان

  • Huilan Lin
  • Liangtao Li
  • Xuan Jia
  • Diane McVey Ward
  • Jerry Kaplan
چکیده

Iron storage in yeast requires the activity of the vacuolar iron transporter Ccc1. Yeast with an intact CCC1 are resistant to iron toxicity, but deletion of CCC1 renders yeast susceptible to iron toxicity. We used genetic and biochemical analysis to identify suppressors of high iron toxicity in Δccc1 cells to probe the mechanism of high iron toxicity. All genes identified as suppressors of high iron toxicity in aerobically grown Δccc1 cells encode organelle iron transporters including mitochondrial iron transporters MRS3, MRS4, and RIM2. Overexpression of MRS3 suppressed high iron toxicity by decreasing cytosolic iron through mitochondrial iron accumulation. Under anaerobic conditions, Δccc1 cells were still sensitive to high iron toxicity, but overexpression of MRS3 did not suppress iron toxicity and did not result in mitochondrial iron accumulation. We conclude that Mrs3/Mrs4 can sequester iron within mitochondria under aerobic conditions but not anaerobic conditions. We show that iron toxicity in Δccc1 cells occurred under both aerobic and anaerobic conditions. Microarray analysis showed no evidence of oxidative damage under anaerobic conditions, suggesting that iron toxicity may not be solely due to oxidative damage. Deletion of TSA1, which encodes a peroxiredoxin, exacerbated iron toxicity in Δccc1 cells under both aerobic and anaerobic conditions, suggesting a unique role for Tsa1 in iron toxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

نقش سیلیکون در کاهش تنش‏ کمبود و سمیت آهن در کشت هیدروپونیک گیاه برنج (Oryza sativa L.)

Silicon (Si) nutrition may alleviate biotic and abiotic stresses including heavy metal deficiency and toxicity in plants. Iron deficiency and toxicity are important limiting factors in growth of rice. In the present study, role of Si nutrition on alleviation of iron deficiency and toxicity was investigated in rice plants. Plants were cultivated in greenhouse in hydroponics, using Yoshida soluti...

متن کامل

The acute toxicity of urea coated ferrous oxide nanoparticles on L929 cell line, evaluation of biochemical and pathological parameters in rat kidney and liver

Introduction: Iron plays an important role in physiological processes as a trace element. Today, iron oxide nanoparticles have attracted extensive attention due to their super paramagnetic properties and a variety of potential applications in many fields. The main objective of this study was to evaluate in vitro and in vivo toxic effects of the iron oxide nanoparticles on L929 cell line, kid...

متن کامل

The effect of zinc sulfate under boron toxicity conditions on some morphophysiological and biochemical properties of grapevine (Vitis vinifera L.)

Boron is an essential plant micronutrient that is involved in the cell wall and membrane structure and functioinig. Boron is often found in high concentrations in association with agriculture in arid  and semi-arid regions. In order to investigate the effect of zinc sulfate on some morphological, physiological and biochemical characteristics of two grapvine cultivars under toxicity of boron, a ...

متن کامل

Acute Toxicity and Accumulation of Iron, Manganese and, Aluminum in Caspian Kutum Fish (Rutilus kutum)

Background: Iron, manganese, and aluminum are three abundant metals on earth and their concentrations have increased in aquatic environments as a result of natural and industrial activities. This study was undertaken to report the median acute toxicity (LC50) and accumulation of the sub-lethal concentration (10% 96-h LC50) of iron (Fe), manganese (Mn) and aluminum (Al) in kutum (Rutilus kutum) ...

متن کامل

Zataria multiflora Essential oil Prevent Iron Oxide Nanoparticles-induced Liver Toxicity in Rat Model

Over loading of iron oxide nanoparticles can causes the liver injury through overproduction of free radicals. Zataria multiflora Boiss. (Lamiaceae) has been used for many years in folk medicine due to its antioxidant and antibacterial activities. This study evaluates -for the first time- the effect of Z. multiflora essential oil (EO) against iron oxide nanoparticles hepatotoxicity in rat model....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 5  شماره 

صفحات  -

تاریخ انتشار 2011